Active foamy virus proteinase is essential for virus infectivity but not for formation of a Pol polyprotein.

نویسندگان

  • J Konvalinka
  • M Löchelt
  • H Zentgraf
  • R M Flügel
  • H G Kräusslich
چکیده

To analyze proteolytic processing of foamy (spuma) retroviruses, two mutations were generated in the presumed active-site triplet Asp-Ser-Gly in the predicted proteinase (PR) region of the human foamy virus (HSRV). The mutations changed either the presumed catalytic aspartic acid residue to a catalytically incompetent alanine or the adjacent serine to a threonine found in most cellular and retroviral proteases at this position. Both mutations were cloned into the full-length infectious HSRV DNA clone. Wild-type and S/T mutant genomes directed the synthesis of particles with similar infectious titers, while the HSRV D/A PR mutant was noninfectious. Immunoblot analysis of transfected cells revealed identical patterns for the wild-type and for the S/T PR mutant. HSRV D/A mutant-transfected cells expressed only a single Gag polyprotein of 78 kDa instead of the 78-kDa-74-kDa doublet found in HSRV-infected or wild-type-transfected cells. Analysis with pol-specific antisera yielded a protein of approximately 120 kDa reactive with antisera against pol- but not gag-specific domains. No Gag-Pol polyprotein was detected in this study. Electron microscopy analysis of transfected cells showed heterogeneous particle morphology in the case of the D/A mutant, with particles of normal appearance and particles of aberrant size and shape. These results indicate that foamy viruses have an aspartic PR that is essential for infectivity but not for formation of the 120-kDa Pol polyprotein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The human foamy virus pol gene is expressed as a Pro-Pol polyprotein and not as a Gag-Pol fusion protein.

It has been reported recently that the human foamy virus (HFV) Pol polyprotein of 120 kDa is synthesized in the absence of the active HFV aspartic protease. To gain more information on how the 120-kDa Pro-Pol protein is synthesized, mutant HFV genomes were constructed and the resulting proviruses were analyzed with respect to HFV pol expression and infectivity. HFV proviruses that contain termi...

متن کامل

Pregenomic RNA is required for efficient incorporation of pol polyprotein into foamy virus capsids.

The foamy virus (FV) Pol polyprotein is translated independently of Gag from a spliced mRNA. This method of expression raises the question of how Pol is associated with the viral particle. Using a transient FV vector transfection system, it is shown that pregenomic RNA is required for efficient virion incorporation of functionally active Pol and that protein-protein interactions of Pol with Gag...

متن کامل

Deletion of sequences upstream of the proteinase improves the proteolytic processing of human immunodeficiency virus type 1.

Human immunodeficiency virus type 1 expresses structural proteins and replicative enzymes within gag and gag-pol precursor polyproteins. Specific proteolytic processing of the precursors by the viral proteinase is essential for maturation of infectious viral particles. We have studied the activity of proteinase in its immature form, as part of a gag-pol fusion protein, in an in vitro expression...

متن کامل

Prototype foamy virus protease activity is essential for intraparticle reverse transcription initiation but not absolutely required for uncoating upon host cell entry.

Foamy viruses (FVs) are unique among retroviruses in performing genome reverse transcription (RTr) late in replication, resulting in an infectious DNA genome, and also in their unusual Pol biosynthesis and encapsidation strategy. In addition, FVs display only very limited Gag and Pol processing by the viral protease (PR) during particle morphogenesis and disassembly, both thought to be crucial ...

متن کامل

Proteolytic processing of turnip yellow mosaic virus replication proteins and functional impact on infectivity.

Turnip yellow mosaic virus (TYMV), a positive-strand RNA virus belonging to the alphavirus-like supergroup, encodes its nonstructural replication proteins as a 206K precursor with domains indicative of methyltransferase (MT), proteinase (PRO), NTPase/helicase (HEL), and polymerase (POL) activities. Subsequent processing of 206K generates a 66K protein encompassing the POL domain and uncharacter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 69 11  شماره 

صفحات  -

تاریخ انتشار 1995